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UNICAT
Why small-angle scattering?

Premier method for size characterization 
of nanoscale density inhomogeneities

Why quantitative SAXS?
Determine volume fraction and number density
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UNICAT
Outline

Small-Angle Scattering Primer
Quantitative Small-Angle Scattering
Instrumentation
Examples
Summary
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UNICAT How might I summarize 
Small-Angle Scattering?

Studies complement other methods
Applicable to wide variety of 
technologically important materials 
Indirect measure of size, amount, or shape
Easy experiment, harder analysis
Sample in transmission, t=1/µ 
Monochromatic radiation 
(∆λ/λ up to 25% is acceptable)
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UNICAT What can be learned from 
a Small-Angle Scattering Experiment?

Size of scatterer
Amount of scatterers
Polydispersity
Distribution of scatterers
Shape of scatterers
Morphology of scatterers
Composition of scatterers

•There is strong dependence between some of these terms.
•SAS experiments, complemented by other measurements,
can yield rich information about the microstructure.
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UNICAT What types of materials can be investigated 
with Small-Angle Scattering?

Materials science: 
PS spheres: diameter & polydispersity
Depletion restabilization of colloidal silica
Microstructure of porous silica precursor bodies
Yttria-stabilized zirconia
Paint pigment
Colloidal silica

Human medicine
Toughening of PMMA bone cement

Environmental science
Yucca Mountain Groundwater Colloids

Anomalous scattering contrast variation
Silicon Nitride for gas turbine engines
Stability of modified Fe9Cr1Mo Steel at high service temperatures

•Samples with nanoscale density inhomogeneities
•Samples that can transmit > few percent of beam 
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UNICAT
Need for complementary methods

The richness of an integrated approach to 
materials characterization is dependent on the 
availability of complementary methods.

The more you know
the more you can learn.
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UNICAT
Example: M2C in AF1410 Steel

Complementary Methods:
XRD, TEM, AP/FIM, SANS,
mechanical properties,
thermodynamics calculations

SANS results bridged gap between 
TEM & AP/FIM size data
Also provided new information of 
volume fraction and number density
J.S. Montgomery, 1990, 
Ph. D. Thesis, Northwestern University.

A.J. Allen, D. Gavillet, and J.R. Weertman;
Acta Metall 41 (1993) 1869-1884.

Innovations in Ultrahigh-Strength Steel Technology;
edited by G.B. Olson, M. Azrin, and E. S. Wright
Proceedings of the 34th Sagamore Conference,
August 30 - September 3, 1987, Lake George, NY, 1987
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UNICAT
Origin of scattering

Scattering is due to inhomogeneities in 
scattering length density, ρ
Scatterers are

Homogeneous
Dilute (non-interacting)
Randomly dispersed
Same morphology
Same contrast, |∆ρ|2
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UNICAT Basic measures from a 
Small-Angle Scattering experiment
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UNICAT
Outline

Small-Angle Scattering Primer
Quantitative Small-Angle Scattering
Instrumentation
Examples
Summary
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UNICAT
Advantages of Quantitative SAS

Sampling volume large compared to features 
investigated: Statistically Significant Sampling

Sample volume typically 10-12  - 10-10 m3

Scatterer size typically 10-9  - 10-6 m
103  - 1013 scatterers in a single sample volume

SAS probes through bulk material, 
not limited to surface or open porosity
X-ray or neutron radiation sources
can probe optically opaque substances
Can separate different components in multi-
component system (in some cases)



DXC, 2-6 August 2004 Small-Angle Scattering Workshop, P.R. Jemian Slide 13

UNICAT Information Obtained from 
Quantitative Small-Angle Scattering
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UNICAT
Absolute SAS Cross-Section dΣ/dΩ

J Appl Cryst 5 (1972) 315-324, 16 (1983) 473-478
Acta Metall Mater 39.11 (1991) 2477-2487

)()( 0 Q
d
detIQI t

Ω
Σ

Ω= −µ

I(Q) : intensity, arbitrary units
Ι0 : apparent source intensity, arbitrary units

Ω : solid angle subtended by detector
t : sample thickness
µ : absorption coefficient
dΣ(Q)/dΩ : differential scattering cross-section 

per unit volume per unit solid angle
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UNICAT Methods to obtain dΣ/dΩ
Comparison of USAXS: Direct Intensity Scaling
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•Direct measurement of all parameters
•Calibration against secondary standard
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UNICAT
Size Distribution Determination
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UNICAT
MaxEnt size distribution
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J.A. Potton, G.J. Daniell, and B.D. Rainford; J Appl Cryst 21 (1988) 891-897, 663-668.
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UNICAT What can we do for more complex samples,
such as γ′ precipitation in WaspaloyTM ?

Gerhardtl, private communications, 2000

base microstructure 12623 h, 1200° F 2502 h, 1400 ° F
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UNICAT
Simple contrast variation example

When the monster came, 
Lola, like the peppered 
moth and the arctic hare, 
remained motionless and 
undetected.  Harold, of 
course, was immediately 
devoured.
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UNICAT
Contrast Variation Methods

Needed when more than one type of scatterer is present

Vary |∆ρ|2 of one type, holding others constant

Anomalous scattering (X-ray & neutron)

Isotope substitution (neutron)

Isomorphous replacement

Magnetic scattering (neutron)

Concentration variation (X-ray & neutron)

…
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UNICAT

Anomalous Small-Angle X-ray Scattering

Why anomalous SAXS?
Element-specific contrast variation
Use to separate population distributions of 
scatterers

Will ASAXS solve every problem?
Not even close
The easy problems are already taken
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UNICAT
Calculated f′(E) and f″(E)
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Anomalous dispersion terms of 
Yb in SN-88 near the Yb LIII edge (8.939 keV)
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UNICAT
Calculation of f′(E) and f″(E)

The anomalous dispersion terms are calculated 
from the absorption spectrum:

Z Phys 48 (1928) 174-179, J Appl Cryst 17 (1984) 344-351
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UNICAT
ASAXS Analytical Method

Absorption spectrum
Energy selection
Determine anomalous scattering factors
Calculate scattering contrasts

SAXS measurements
Sample and blank at each energy
Calculate transmission
Subtract blank
Apply corrections (e.g., desmearing)
Solve for size distribution

ASAXS analysis
Extract size distribution for each scatterer using contrast gradient 
method
Assess integral, mode, mean, standard deviation, etc. for each size 
distribution
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UNICAT
A-USAXS, the basics
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∑ ∫
∞

∆=
Ω
Σ

=
k

kk dDDQFDVDNEEQ
d
dQI

0

222 ),()()()(),()( ρintensity of scattering

dDDQGEDEQI ∫
∞

=
0

),(),(),( ϕintensity, simplified

Solve for ϕ(D,E) with MaxEnt, regularization, or some other constrained method. 
For example, J Appl Cryst 21.6 (1988) 663-668.
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UNICAT
Necessary Measurements

a priori information
Sample composition
TEM/STEM/AFM/AP-FIM
XRD
Porosimetry
Gas adsorption
…

Sample thickness
Sample uniformity
Sample absorption spectrum
Instrument absorption spectrum
Sample (+instrument) SAXS
Instrument SAXS profile
Absolute SAXS cross-section dΣ/dΩ
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UNICAT
Sample Uniformity Measurement

Illuminated area must be representative of sample
Sample thickness must be uniform 
No pinholes
Sample positioning must be precise and reproducible

How precise?
Depends on beam size & sample uniformity
Precision (step size) ~ 20 µm
Reproducibility < 50 µm

Achieve with a X-Y translation stage

Verify using radiography and USAXS imaging
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UNICAT
Absorption Spectrum Measurement

X-ray absorption spectrum of SN-88 
near the Yb LIII edge (8.939 keV)

Use to determine 
position of absorption 
edge
Calibrate energy for 
experiment
Derive anomalous 
dispersion corrections
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UNICAT
ASAXS Energy Selection Criteria

Maximize contrast change of target population, work 
near absorption edge
Minimize the energy range to be covered, 200-300 eV
sufficient
Avoid X-ray fluorescence, stay below absorption edge
Avoid Resonant Raman Scattering, stay away from 
absorption
Consider monochromator energy tails, measure 
absorption spectrum from SAXS sample!
Maximize the number of energies
Use all available beam time
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UNICAT
Energy Selection, contrast
Calculate the scattering contrast of the major populations
Choose energies so that |∆ρ(E)|2 are evenly-spaced
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UNICAT
Energy Selection, absorption
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X-ray absorption spectrum of SN-88 
near the Yb LIII edge (8.939 keV)

Don’t get too ambitious 
(a.k.a. greedy)
Stay below the 
absorption edge

No closer than –15 to 
-25 eV for K edges
No closer than –30 to 
-40 eV for LIII edges

No closer than 
minimum of absorption 
spectrum
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UNICAT
Outline

Small-Angle Scattering Primer
Quantitative Small-Angle Scattering
Instrumentation
Examples
Summary
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UNICAT
Instrumentation

The trick is to measure an intensity which varies by 
several decades very close to the intense transmitted beam.  
Must avoid damaging the detector with the transmitted beam!

Designs
Slit cameras
Pinhole cameras
Ultra-Small-Angle 
(a.k.a, USAS or Bonse-Hart)
Grazing incidence 
(reflection, not transmission)

Sources
X-ray tube
Rotating anode
Synchrotron X-ray source
Reactor
Pulsed neutron source
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UNICAT
APS SAXS instruments

http://small-angle.aps.anl.gov
Nine different small-angle X-ray scattering (SAXS) beam lines are accessible to the APS general 
user. The combined capabilities of these beam lines span a broad range of reciprocal space and X-
ray photon energy allowing for investigations from many disciplines of science including biology, 
materials science, environmental science, chemistry, medicine, and physics. Coupled with a high 
data throughput and fast time-resolved measurement capabilities, these instruments enable an 
efficient use of the high intensity and high brilliance APS X-ray source. 
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UNICAT
Example pinhole SAXS: BioCAT
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UNICAT
Example pinhole SAXS: 8ID

Sample 
Chamber

Guard 
Slits

Detector
Stage

Precision Beam 
Defining Slits

Monochromatic 
or

Pink Incident 
Beam

Detector 
Flight 
Path



DXC, 2-6 August 2004 Small-Angle Scattering Workshop, P.R. Jemian Slide 37

UNICAT
Beam stop limits largest size resolved

Beam stop
Needed to protect 
detector
Limits minimum Q ,
typical Qmin~10-3 Å-1 ,
(dmax~200-600 nm)

π2~maxmindQ
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UNICAT

Ultra-Small-Angle X-ray Scattering

Why Ultra-Small-Angle X-ray Scattering?
Resolve scattering from inhomogeneities larger 
than 100 nm
Address the question:
“What’s behind the beam stop?”

What is different than regular SAXS?
Angular collimation by Bragg reflection 
Shorter instrument
No time-resolution
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UNICAT
Basic idea of Bragg collimation
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Paul Kaesberg, W.W. Beeman, and H.N. Ritland; Phys Rev 78 (1950) 336.
Ulrich Bonse and Michael Hart; Appl Phys Lett 7 (1965) 238-240,  Z fur Physik 189 (1966) 151-162.
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UNICAT
Pinhole vs USAS

Camera Pros Cons

Pinhole • Simple design
• Can use area detector
• Time-resolved studies
• Adjust collimation with slits
• No slit smearing

• Qmin > 0.001 Å-1

• Can’t reject fluorescence
• Long detector distance 

needed for high resolution

USAS • reaches very small Q
• compact size
• absolute cross-section
• rejects fluorescence
• examine larger sample 

volume without 
compromising resolution

• must use step-scan
• must correct for slit 

collimation
• Bragg reflection is 

background
• More complex operation
• Adjust collimation by 

changing crystal optics
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UNICAT
Slit-Smearing Geometry
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200/00 lw ≈
typical collimation ratio in USAXS
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UNICAT
Desmearing Examples
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J.A. Lake; Acta Cryst 23 (1967) 191-194. Syed Ali Shah, 2003, Ph.D. Thesis, 
University of Illinois at Urbana-Champaign.
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UNICAT
UNICAT USAXS Instrument

www.uni.aps.anl.gov/usaxs

APS

33ID
undulatorSi (111)

monochromator

mirrors
2D slits

Si (111)
collimating

crystals

ion
chamber

sample

Si (111)
analyzer
crystals

photodiode
detector

Io
I 2θ

E

sample

2D slits
Si (111)

collimating
crystals

sample

Si (111)
analyzer
crystals

Si (111)
side-reflecting

crystals

ion
chamber

side view

top view

detector
(photodiode

or CCD)

optional side-reflection geometry

•Q range:  0.00015 ≤ Q, Å-1 ≤ 1
•X-ray energy tunability: 7 – 20 keV 

•energy resolution: ∆E/E ≈ 0.00015

•energy harmonic content < 10-6

•0.5 x 2 mm2 beam size, adjustable

•I0 >1012 ph/s (10 keV) delivered to sample
•sample in air (ca. 1/4 m from detector)
•automatic sample changer/translation stage
•absolute determination of dΣ/dΩ(Q)
•USAXS imaging

Versatile USAXS (Bonse-Hart) facility for 
advanced materials research at APS Beam Line 33ID-D

collimating 
channel-cut 

crystal
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UNICAT
UNICAT Standard USAXS Setup

S

I
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2θ
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UNICAT
UNICAT USAXS Instrumentation

Bonse-Hart camera
Tested range of energies: 7 – 19 keV (10 keV common)
I0 >1012 ph/s (10 keV) delivered to sample
Usual Q range: 0.0002  to  0.1 Å-1

(very strong scatterers can be measured to 0.8 – 1.0 Å-1)
Calibration method: direct absolute intensity scaling
(standard-less method uses known sample thickness, instrument 
geometry and direct measure of straight-through beam)
Detectors:

Data: Unbiased PIN Photodiode + linear current amplifier 
50 fA – 1 mA distributed across 5 gain ranges
Monitor: Air ion chamber 
Apparent noise level is about 0.5% of signal

Data collection time: ~15 – 20 minutes for 150 points
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UNICAT
UNICAT USAXS Geometry Comparison

Comparison of 1-D and 2-D collimation geometries

standard USAXS 2-D collimated SRUSAXS

collimation 1-D 2-D

desmearing needed not needed

Studies isotropic scatterers colloids, anisotropic scatterers

Q range 0.00012 Å-1 to 1 Å-1 0.00012 Å-1 to 0.1 Å-1

Intensity range up to 9 decades, I0>1012 ph/s up to 8 decades , I0>1011 ph/s

Maximum beam 
size

2.5 mm (h) × 0.4 mm (v) 1.0 mm (h) × 0.4 mm (v)
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UNICAT
UNICAT USAXS User support

Experiment data acquisition in spec
(run from Linux command line)

Custom macro package

Data processing and evaluation in IgorPro
(run from Windows or Macintosh)

Data reduction package: Indra (ver. 2)

Data evaluation package: Irena (ver. 1 beta)

Both are available: http://www.uni.aps.anl.gov/usaxs
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UNICAT
Outline

Small-Angle Scattering Primer
Quantitative Small-Angle Scattering
Instrumentation
Examples

Polystyrene spheres
Colloidal silica with ZrO2 additive
Microporous SiO2
PMMA bone cement
A-USAXS of commercial modified Fe9Cr1Mo steel
A-USAXS of commercial silicon nitride

Summary
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UNICAT Polystyrene spheres:
Determination of Size & Polydispersity

460 nm spheres
D=477(4) nm
PD=1.6%

Jemian, Ph.D. Thesis, 1990, Northwestern

255 nm spheres
D=267(9) nm
PD=6.8%
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UNICAT
Colloidal silica with zirconia additive

Tohver, Ph.D. Thesis, 2001, Univ of Ill at Urbana-Champaign
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•Nonadsorbing
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colloids added to disperse 
silica colloids

•SAS can be used to 
characterize these sizes
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UNICAT Depletion restabilization of 
0.5µm colloidal silica
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Tohver, private communications, 2000
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UNICAT
Porous silica precursor bodies

Long, et al., J Appl Cryst 23.6 (1990) 535

Prepared by sol-gel process
Mixtures of colloidal silica and potassium silicate
Microstructure: array of particles, 
small clusters, and aggregates of colloids
USAXS and SANS to characterize 
polydisperse size distributions of particles in porous 
medium as function of mixture ratio
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UNICAT
Microporous silica results
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UNICAT Fracture Toughness of PMMA Bone Cement 
Containing Particulate Fillers

Anuj Bellare, PhD, Wolfgang Fitz, MD, Andreas Gomoll, MD, Richard D. Scott, MD,  Thomas S. Thornhill, MD, 
Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

Total Knee and Hip Replacement Prostheses
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UNICAT Barium Sulfate Particulate
added to PMMA as Radiopacifier

Bellare, private communications
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UNICAT

Radiopacifier Weakens the Bone Cement

Topoleski et al, J. Biomed Mater. Res., 1990

agglomeration

2 µm2 µm

Various Bone Cements Impact 
Strength (J)

Simplex 0.333± 0.02

Palacos R 0.402± 0.03

Palacos  K 0.382± 0.03

CMW – 0 0.578± 0.06

CMW+4% BaSO4 0.323± 0.03

CMW+8% BaSO4 0.274± 0.03

CMW+4.2% Erythocyne 0.461± 0.03

CMW+8% BaSO4+4.2%Ery 0.372± 0.03

de Wijn et al, Acta Orthop Scand, 1975
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UNICAT
Nanocomposite Bone Cement

Improved dispersion using nanoscale particulate and surfactant 
while maintaining radiopacity

Gomoll, et al., MRS, Vol. 581, (2000) 399
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UNICAT
Examples

Hey!
I got one! 
I got one!

Gary Larson, The Far Side
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UNICAT Stability of Modified Fe9Cr1Mo Steel 
at High Service Temperatures

Ferritic steel developed at ORNL (1983), proposed 
for use in power-generation at elevated 
temperatures
Attractive properties

High temperature use in corrosive environments
high rupture strength at both room and elevated 
temperatures
good weldability
low thermal expansion
resistance to radiation-induced void swelling

Cr23C6, VC, and NbC present
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UNICAT Chromium Carbide Distribution in
Modified Fe9Cr1Mo steel by ASAXS

0

4

8

12

16

649° C

0

4

8

593° C

0

4

8

12

538° C

0

4 482° C

0

4

8

N&T

0

4 704° C

1006030 300 600
sphere equivalent diameter, nm

C
r 2

3C
6 v

ol
um

e 
fr

ac
tio

n 
si

ze
 d

is
tri

bu
tio

n,
 f(

D
), 

10
-5
 n

m
-1

Volume-fraction size distributions of Cr23C6 in 
Modified Fe9Cr1Mo steel, determined by the 
ASAXS gradient method.  The vertical bars 
represent the margin of error.  The solid line is 
spline smoothed.

Jemian, Ph.D. Thesis, 1990,Northwestern
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UNICAT Tensile Creep Resistance of 
Commercial Silicon Nitride

• Prime candidate for structural components in advance gas turbines at 
high turbine inlet temperatures

• Creep compromises excellent high-temperature mechanical properties

• Cavitation possibly most important mechanism resulting in creep
deformation

• Evolution of secondary phase pockets not previously studied due to 
lack of suitable technique

•Earlier USAXS showed deformation occurs via cavity accumulation at 
multigrain junctions

•Follow evolution of Yb-rich secondary phase pockets 
and voids as a function of creep testing using A-USAXS 
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UNICAT
Silicon Nitride Microstructure

–commercial grade of gas-pressure sintered silicon 
nitride (designated SN88) 

– β-Si3N4 grains

–major crystalline secondary phase after heat 
treatment is ytterbium disilicate, Yb2Si2O7

–minor phases include residual Yb4Si2N2O7, Y5Si3NO12, 
residual SiO2 glass, and porosity
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UNICAT Tensile Creep Resistance of 
Commercial Silicon Nitride

•commercial grade of gas-pressure sintered silicon nitride (designated SN88) 
•β-Si3N4 grains
•major crystalline secondary phase after heat treatment is ytterbium disilicate, Yb2Si2O7
•minor phases include residual Yb4Si2N2O7, Y5Si3NO12, residual SiO2 glass, and porosity

cavities Yb2Si2O7
β−Si3N4
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UNICAT
Silicon nitride SN-88 samples

Five tensile creep tests

Different test times: 30 s – 85 h

1400° C, 150 MPa load

Tests interrupted and cooled under load

A-USAXS samples ground and hand-polished

Sample from undeformed grip, 180 µm

Sample from gage parallel to stress axis, 100 µm
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UNICAT A-USAXS near the Yb LIII edge from SN-88 
tensile creep sample, 50 h
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UNICAT A-USAXS size distributions from SN-88 near 
the Yb LIII edge
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UNICAT Yb disilicate and tensile creep cavity size 
distributions from SN-88
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UNICAT Evolution of size distributions in SN-88 with 
test time, 1400 C

Yb disilicate size distributions, grip section tensile creep cavity size distributions

40x10-6 

30

20

10

0

f d
is

ili
ca

te
(D

), 
Å

-1

12000800040000

diameter, Å

 30 sec
 24 hr
 50 hr
 69 hr
 85 hr

6x10-6 

5

4

3

2

1

0
f vo

id
(D

), 
Å

-1

12000800040000

diameter, Å

 30 sec
 24 hr
 50 hr
 69 hr
 85 hr



DXC, 2-6 August 2004 Small-Angle Scattering Workshop, P.R. Jemian Slide 69

UNICAT
Creep strain and cavitation in SN-88

J. Eur. Ceram. Soc. 22 [14-15] 2479-2487 (2002).
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UNICAT Tensile Creep Resistance of Commercial 
Silicon Nitride: A-USAXS Results
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Linear relationship between Vv measured from A-
USAXS and tensile strain agrees well with density 
change data and confirms that cavitation is the main 
creep mechanism.

Lofaj, Wiederhorn, Long, Hockey, Jemian, Browder, Andreasen, & Taffner; 
J Euro Ceram Soc 22 (2002) 2479-2487.

Creep pore size distribution separated from 
size dist of secondary phase pockets of 
comparable size.
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UNICAT
Conclusions: SN88 A-USAXS study

A-USAXS used to determine simultaneously Yb disilicate and 
creep cavity size distributions in SN-88
Yb disilicate and creep cavities were of comparable size
Vv of Yb disilicate 5-8 times greater than Vv of creep cavities
Vv of creep cavities proportional to tensile strain, slope = 1
Good agreement with density change data
Confirmation that cavitation is the main creep mechanism
A-USAXS obtained statistically-significant measurements of Yb-
rich secondary phase pockets during creep in the presence of a 
creep cavity population of similar dimensions
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UNICAT
Outline

Small-Angle Scattering Primer
Quantitative Small-Angle Scattering
Instrumentation
Examples
Summary
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UNICAT
Wrap up

SAS investigations measure nanoscale
microstructure
Many different materials of technological 
importance can be investigated
Contrast variation methods possible
Statistically significant results
Unique results not obtainable by other 
methods
Complementary methods increase the 
information content which can be realized 
from a quantitative SAS investigation
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UNICAT
Resources

Organizations
IUCr SAS http://www.iucr.org/iucr-top/iucr/csas.html
ANL SAS SIG http://small-angle.anl.gov
UNICAT USAXS http://www.uni.aps.anl.gov
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UNICAT
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